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* THE SEPARATE COMPUTATION OF ARCS FOR OPTIMAL
FLIGHT PATHS WITH STATE VARIABLE

INEQUALITY CONSTRAINTS

By

Jascn L. Speyer, Raman K. Mehra, and Arthur E. Bryson, Jr.

Division of.Engineering and Applied Physics

Harvard University Cambridge, Massachusetts

ABSTRACT

Separate computation of arcs is possible for a large class of
optimization problems with state variable inequality constraints, Surpris-
ingly, this class (to the best of the authors' knowlege) includes all physical
problems which have beer solved analytically or numerically to date. Typi-
cally these problems have only one constrained arc, Even in more complex
problems, separation of arcs can be used to search for additional constrained
arcs,

As an important example, @ maximum range trajectory for a glider
entering the Earth's atmosphere at a supercircular velocity is determined,
subject to a maximum altitude constraint after initial pull-up. It is shown
that the optimal path can be divided into three arcs, which may be deter-
mined separately with no approximations. The three arcs are (1) the initial
arc, beginning at specified initial condition and ending at the entry point onto
the altitude constraint; (2) the arc lying on the altitude constraint; and (3)the
terminal arc, beginning at the exit point of the altitude constraint and ending
at some specified terminal altitude,

* The work reported was partially supported by the Space and Information
Systems Division of the Raytheon Company.



ABSTRACT (Cont'd)

The conjugate gradient method, (ref. 4), a first order optimization scheme, is
shown to converge very rapidly to the individual unconstrained optimal arcs.
Using this optimization scheme and taking advantage of the separation of

arcs an investigation revealed that two locally optimum paths exist. The

range of one exceeds the range of the other by about 250 nautical miles

(about 6% for the re-entry vehicle used here (maximum lift-to-drag ratio

is .9)




I. INTRODUCTION

In the past few years techniques for solving optimal programming
problems with a state variable inequality constraint (SVIC) have been
developed. Necessary conditions for a stationary solution were given by
Gamkrelidze [1], and Bryson, Denham, and Dreyfus,[2]. One numerical
technique for solving such problems uses a ''penalty function' which re-
quires the introduction of an auxiliary state variable [3], [4]. An improve-
ment over the ''penalty function'' method, in both speed and accuracy, is
the direct approach [5], where the SVIC is satisfied without using an
extra state variable. In both techniques, the equations of motion and the Euler-
Lagrange equations must be integrated over the entire path for each itera-
tion,

The present paper shows that for certain problems with a SVIC, the
computation of the state and Euler-Lagrange variables need only be done
on the unconstrained arcs, Numerical computation of shorter unconstrained
paths allows more rapid convergence and increased numerical accuracy.

Also, if the constrained arc forms a large part of the entire path, this
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greatly reduces the amount of computation required, This separation of
arcs occurs, for example; in the problem of finding the maximum range of
a glider entering the Earth's atmosphere at parabolic velocities subject to
a maximum altitude constraint after initial pull-up ( sketch of possible
trajectory in altitude-range space is shown in Fig, 1) . This problem was
solved by the direct method of reference 5 and by the penalty function
method in reference 11, The independence of the unconstrained arcs can
be seen by observing that on the constant altitude constraint two of the
three state variables are fixed (altitude and flight path angle); the velocity
decreases due to the drag force. Velocity vs, range is a universal curve
on this arc; only the velocity at the beginning and the end of this arc need
be determined. A maximum range path, starting at any velocity on the
constraint boundary that is higher than the velocity at the end of the con-
strained arc, has the same unconstrained path from the exit poﬁ.nt of the
altitude constraint to the terminal altitude, Similarly, a maximum range
path, ending at any velocity on the constraint boundary that is lowef than
the velocity at the beginning of the constrained arc, has the same uncon-
strained path from the inital point to the entry point onto the constraint
boundary., The unconstrained arcs can be found separately, determining
the velocities at the beginning and the end of the constrained arc in the
process. Having these velocities, the range on the altitude constraint can
be easily evaluated, The three arcs put together form the maximizing
path, without any approximations.

Such separation of arcs is possible if the number of variables on
which the motion and constraints depend explicitly is larger by one than

the order of the SVIC, The order of a SVIC is defined as the number of




"3JOVdS IONVY-3ANLILTIV NI AHOLO3rVYL S, ¥3AIN9 3HL 40 HOL3XS | 9id

FONVY
-

I AINIVHLSNOIN/]
TVILINI

IV AINIVHLSNOINIT
TONIWYTL

/
ANIOd LIXT \

ASYAGNIOE FaNLIL7V ANIOd AHINT

y

FanLILT7V




-4.

differentiations of the SVIC function needed for the control variable to

appear explicitly (cf. ref. 2)

2, PROBLEM FORMULATION
The general problem considered here is to determine a control

program u(t), in the intervalt =t= t; so as to maximize

/‘tf

J =j g(x,u,t) dt (1)
t

(o)

subject to the constraints

x = f(x,u,t) (2)
M = M[x(tf),tf] (3)
S(x,t)< 0 (4)
to and x(to) given (5)

where t {time)is the independent variable; (- ) is d/dt('), u(t) is a
scalar control variable; x(t) is an n-vector of state variables; f is an n-
vector of known functions of x(t), u(t), and t, and is assumed everywhere
differentiable with respect to x and uy M is a gq-vector of known functions
of x(tf) and tf, q< n, S is a scalar function of x(t) and t.

For those intervals of time that an extremal solution lies on a pth

order SVIC boundary (S(x,t) = 0) it is necessary that S and all its time

derivatives that do not contain the control be zero:

[s.S,...., s®-T =g (6)
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The value of the control which keeps (6) satisfied along the constrained path

is obtained by the pth derivative of S
sPx, u,t) = 0 (7)

It is assumed that the control on the constraint boundary can be found as a

function of {(x,t) from the implicit equation (7) in the form

u = A (x,t) (8)

3. SUFFICIENT CONDITIONS FOR SEPARATE COMPUTATION OF ARCS

Separation of arcs is possible if the contribution of the constrained arc
to the performance index depends only on the entry and exit values of one
variable (t or some element of x). Suppose the contribution of the constrained

arc to the performance index, J(tlptz) is

&
It t,] :,/ g(x,u, t) dt (9
B!
where t, is the entry point time and t, is the exit point time, If p=n

then (6) can be used to solve for all the variables in terms of one, say % .
Let the remaining n-1 state variables be denoted by the vector y. Then
from (6)

(= = | (10)

All the variables in (9) can be eliminated except %, if (y,t,u) are
eliminated using (10) and (8) and the variable of integration is changed from

t to x, by the differential element of x4 in (2) as

1

X, =f1(x1,,yyt,u) (11)



Thus (9) becomes

_x(t,)
T gl xlx 1A B, x 0]

Iltyat,l = . dx
1 “/Xl“ﬂ g%y, v A B, e}
(12)
fxl(tz)
- j G (x)) dx; =K [x(t;)] - K [x(t,)]
xl(tl)

It is tacitly assumed that starting from any value of xl(tl) on the
constrained arc, the value of xl(tz) will eventually be reached,
If (12) is possible then the optimization problem can be separated

into two smaller optimization problems, They are; find u(t) to maximize

J, =73 [to , tl] -K [xl(tl)] (13)

subject to (2), (5) and the corner conditions of (6) and ; find u(t) to

maximize

J, =Mty » t] + Klx (t,)] (14)

subject to (2), (3) and the initial conditions of (6). The sum of (13) and
(14) will give the maximum value of (1),

If the equations of motion and boundary conditions do not explicity
depend upon clock time but only on time elapsed from the initial time, then

the arcs will separate for n-1 = p,

4. MAXIMUM RANGE OF A HYPERSONIC GLIDER WITH AN

ALTITUDE CONSTRAINT

The ideas of the previous section are applied here to the problem of
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maximizing the range of a glider (entering the Earth's atmosphere* at

parabolic speeds) with an inflight constraint on the maximum altitude

after pull-up. This problem, originally thought to be a complicated prob-

lem with a SVIC (ref, 5), falls into the special class of separable problems,
The nomenclature for this problem is given in Fig.‘ 2., The aero-

dynamic forces, lift and drag, are varied through the control variable

a(t) = angle-of-attack. The lift-drag characteristics of the glider are shown

in Fig. 3. The wing loading of the glider mg/S, was taken as 61,3 1b. ft_Z.

The 1956 ARDC standard atmosphere model was used, The glider is

approximated as a point mass moving about a spherical nonrotating Earth,

The equations of motion are:

. -CDpVZS
V= ——— -gsin Y (15)
2m
C_ pVS
v = +( L. £ ) cos v (16)
2m R +h A\
h= V sin Y (17)

The problem is to find the control program, @(t), which maximizes the

range
te
RA= v cos Y dt (18)
¢ 1 +h/R
o

subject to (15),(16), and (17), with initial conditions on V,y, and h, and a

*Actually the problem is started in the Earth's atmosphere partly to save
computer time and partly because the control force is negligible compared
to the centrifugal force during most of the omitted path,
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terminal condition on altitude and the inflight inequality constraint

h(t)< hy (19)

where hM is the given value of the maximum allowable altitude.

5. SEPARATION OF ARCS FOR THE MAXIMUM RANGE
PROBLEM
Starting from the initial conditions, a maximum range path even-

tually enters onto the constraint boundary at time t At this point

1

h-h =0 (20)

h =Vsin y = 0 (21)

must be satisfied as well as all along the constraint boundary, The con-
trol used to keep (20) and (21) satisfied on the constraint boundary is found

from h =0 which implies

c. = 2m [g_M —Y_ (22)

L

pMVS v R + hM

where Pr and &, 2are the values of p and g on the constraint boundary,

Since h and Y are fixed on the constraint boundary, only the velocity
is free., The horizontal range travelled on the constraint boundary can be
found as a function of the arc-entry and arc-exit velocities. The independent
variable t 1is eliminated by (15) so that

V(tl)
2mdV

V(t,) (1 +hy,/R) CpPy(VS

Rp [totp] = = F[v(t)] - FV(E)]  (23)
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where CD is a function only of velocity through (22) and Fig. 2.
Conceptually R‘A(tl._,y tz) depends only on the values of the exit and entry
velocities although in general an analytic expression cannot be found.

Thus the problem can be reduced to two smaller problems in which
the unconstrained arcs are found separately. The initial unconstrained
arc from the initial conditions to the entry point onto the constraint
boundary is found by obtaining a a(t) which maximizes,

t

Ry = | 205X gt + FV(t,)] | (24)

t 1+h/R

o

The terminal unconstrained arc from the exit point of the constrained arc
to the terminal boundary is found by evaluating an @(t) which maximizes
t

f

Ry = ‘———-—*Y.,Cos L odt - F[V(t,)] (25)
1+h/R
t2

The sum of RI and RF is the total range R ,.One of the results of this

A
optimization technique is to find the velocities at the two ends of the con-
strained arc,

If it is found that V(tl)S V(tz) then no path of finite length lies on
the constraint boundary although the optimal path may coincide with the
constraint boundary at a point. In this case there is no separation. However,
for a given set of constraint levels an intermediate point constraint must be

imposed {2], defined as S(xptl) =0, The Lagrange multiplier associated

with the intermediate constraint must be positive (for maximization) ; if it

is not; anunconstrained path which lies below }the constraint boundary will be better,
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Necessary conditions for the two unconstrained arcs can be stated

after first augmenting the performance indices as

t
R, = - Xy - Ak
RI @I + [H )\v \% )\YY nb ] dt (a)
t
o
(26)
b
Ry = Pt [H-)\VV -XYY - Ah]dt (b)
t
2
where
¢ = F[V(t)] +vph(t) ]+ va(tl) (a)
(27)
8 = -F[V(t,)] +v [h(t) -h(] (b)
and the variational Hamiltonian is
2
CPV'S
H=Vcosy_)\[D +gsin\}
1+h/R U 2m
(28)
C_pPVS
+>\[ L + ( V-—g-)cosy]-i-)\thinY
YU 2m R+h V
Here Xv, )\Y, Xh’vh’ \)Y,\i’1 are Lagrange multipliers, The Euler-Lagrange
equations are defined from (28) as
N = A\ =-H. A = - 2
N, =-H xY H,, Ay H (29)

The boundary conditions for the initial unconstrained problem at 1;1 are

—_ —_ Zm - =
R U T A () =Ry )™

(1+=) CpP V'S

= 30
t t) (30)

w M) = Qh(tl) =

v

h
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The boundary conditions for the terminal unconstrained problem at

'cf are
kv(tf) = év(tf) = O,XY(tf) = QY(tf) = O,Kh(tf) = Qh(tf) =V (31)
while at the exit corner
2m
A =& = 32
vity) T v(t,) Ry (32)

(I +—=) (CpP,,VS)
R D'M

t=t2

The original problem has been reduced to two, two-point boundary-
value problems. For the initial arc the form of h,Y, and )\v are known
at the entry point and the initial conditions are given. For the terminal arc
the form of h,y, and }\v’ are known at the exit point whereas at the terminal

boundary the values of }\v’ A,, and h are known. Note that the problem

’Yi
is time-independent., This implies that H = 0 all along the optimum path.
In this example there are three state variables and a second order

SVIC. Since the problem is time-independent n-1 = p,

6. CALCULATION OF THE PERFORMANCE INDEX

ON THE CONSTRAINED ARC

An analytic expression cannot in general be found for the range when on
the constraint boundary (23). However, when a successive improverﬁent
optimization scheme is used, some indication as to the improvement of the
performance index is necessary. It is suggested that a table be made of

range as a function of velocity starting at the largest expected value of V(tl)
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and ending at the lowest expected value of V(tz). The performance indices
of (24) and (25) are written as RI - F(VB) and RF + F(VL) where VB and
VL are chosen values in which on every iteration V(tl) >VB and VL >V(t2).
Evaluating F(V(tl)) - F(VB) and F(VL) = F(V(tz)) on the computer is re-
duced to a table look-up.

However, one important case where an analytic expression can be

found for (23) is for the lift+drag polar defined as

C, =C o (33)

Cp=C +G & (34)
o 1

_ -3
For values of the constants of CL = ,020, CDO =.,297, CD = .,451 X 10

o 1

the lift-drag polar of Fig, 2 is obtained from (33) and (34). o(t) on the

constraint boundary is now simply obtained from (33) and (22) as

2 g 1
o = m ( M ) (35)
2
CLOPMS Y% R+ hM

The drag coefficient of (34) is a function of velocity on the constraint

2r 2 >
2m ] Em “Bm 1
T - > + > (36).
cLopMs J v (R +hy )V (R +h)

=D 9D
o) 1
The analytic expression for the range on the constraint boundary solved by
integrating (23) analytically is
RA[tl’tZ] = F[V(tl)] 'F[V(tz)] =

RQ Q
11 1 4 2
2 |, 1eB RV RV Q) -
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where
CD C.g. (R +h )
o = 2m 0 =CD + 1 QZ Q. = DM M
I R+h )p 8 2 D, 1773 c
MM L L
o o)
3
TN X R e
Q, 6 =- , Q. # , Q = Q.0
4 C 5 C o 371
L D Cp
o 1 1

7. REzENTRY WITH G-LIMITING AND TOTAL HEATING CONSTRAINT

For practical reasons, the re-entry problem may be complicated further
by additional constraints. One such constraint is a limit on the resultant
aerodynamic force. The ratio of the resulting aerodynamic force to the sea

level weight is defined here as the number of g's,

,/Z 2
N = L +D (38)

g mg_

If Ng is required to be less than some given number, this imposes a control

variable inequality constraint on the trajectory. This constraint can be han-

dled by the techniques of reference 2. It presents no obstacle to the separation

of arcs as long as g-limit is always satisfied along the constraint boundary.
Another practical constraint is a limit on the total heat absorbed by the

heat shield. If the total heating is constrained the arcs cannot be separated

in the maximum range problem with an altitude constraint, The amount of

heat absorbed on one arc determines the amount of heat that can be absorbed

on the other arc., The arcs are now dependent upon each other and the more

complicated technique of reference 5 can be used, However, an alternative
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approach is to perform a parameter search on an equivalent problem

that does separate. The heating rate is
. 3
q=C p# \% (39)
q
where q 1is the heat and Cq is a known constant. A composite performance
index can be formed using (39) and (18) as

t

£
R = [YC—"Si _ ke of V3] dt (40)
q . 1 +h/R q
o]

The procedure for finding optimal paths with a heating constraint is as
follows: Choose a value for K. Since the problem is separable, the optimal
arcs can easily be found and the total heat evaluated. If the value of total
heating is greater than the desired value, K is increased; if less than the
desired value, K is decreased., For a new value of K the optirﬁal arcs and
the total heating are again evaluated. This search for the proper value of K
is continued until the desired value of total heating is attained.

In general, integral constraints (the heating constraint above is an

example) may be handled by this procedure.

8., NUMERICAL DETERMINATION OF MAXIMUM RANGE

TRAJECTORIES

Numerical Methods The '"Conjugate Gradient Method' of reference 4, was

used to determine the two unconstrained arcs of the re-entryAproblem.
To check the results of the Conjugate Gradient Method a second order
optimization program, the ''successive sweep method'' of references 6 and 8,

was used., This latter algorithm generates a sequence of improving paths
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by maximizing a quadratic approximation to the performance index.
Intitial Arc The initial conditions for this arc were taken as: V = 33, 961 ft./sec.,

Yy=-1.57deg., and h = 189,890 ft. The terminal conditions at the entry point

|
{t.= tl) onto the constraint boundary are h = 220,000 ft. and y =0 (V and t1
are unspecified)., The equations of motion were integrated forward from the

given initial conditions until y becomes zero for the second time. In the
conjugate gradient method the altitude constraint at the end of the arc was met
ﬁsing a quadratic penalty function. At that point )\Y was determined by setting

the Hamiltonian equal to zero, Convergence was achieved in seven iterations
using less than 15 seconds per iteration on the IBM 7094 computer, Fig, 4
shows, in altitude-range space, the starting nominal and some of the following
iterations.

However, the trajectory of Fig. 4 is not the optimum path; it is
only a local optimum. Fig. 5 shows this path with another locally optimum
path that gives 30% more range for the initial arc down to a velocity of 26,494
ft. /sec {(from this velocity on, the maximum range paths are the same). The
increase in range over the entire flight is 6% The existence of two locally ‘
optimal paths was not detected in either reference 11 or 5.

These two paths arise from widely different control strategies |
(See Fig. 7). Path 2 in Fig. 5,6, and 7 uses low angles-of-attack to keep the
drag small and consequently penetrates deeply into the atmosphere where air |
density is high, Path 1 uses larger values of angle-of-attack to keep the
vehicle at higher altitudes where air density and drag are lower. Path 1l seems

to concentrate on maximizing F[V(tl)] in Eqn. (24) whereas path 2 seems to



“H1¥d TYWIYLXI FHL 0L 39Y3IANOD 01 3SN QOHLIW LNIIQVYY 3LVONTNOJ 40
SNOILYY3LI NIAIS “AYINI-3Y 40 ISYHA TYILINI 404 AYOLOICVHL JONVY WNWIXVA KNWILAO ATIVO0T ¥ 91

TYNIWON
‘L4 ~ 39NVY ONILHVLS
0000008 000'000°'9 000000t 000'0002 /4\ 0
T T T T

000'081

0000611

NOILVH3LI 4s!
~000°002

000212

SNOI1VYH3Ll £
y3.14V TVW3IYLX3

NOILVY3LI pu§

§
\4\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ TT 7T 777 T7 7777777777777 000022

AYVANNOG 3ANLILV
‘L4~ 30N11V

I




"30VdS F9NVH-3ANLILTV NI AHLIN3I-34 40
4SVHd TIVILINI 3HL 404 S3IIHOLO3IrVHL JFONVYH WNWIXVIN AT1vO01 OML G 94

14 ~39NVY
000'000'8 000'000°9 000'000‘ 000'000'2
_ ! | _ I _ I _

— 00008

000'06|

03S/14 v6v‘'92 = SH1vd

TIV 40 ALIDOTIA TUNIAYIL
¢ Hlvd — 000002

| HLvd 2 H1vd
40 39NVY 40 3ONVY

i~ HLYd—

ALID0T3A ]
WNWIXVN -

—14000'09"] — 0000

‘14 000'b0g — _)1
| L7

3
TTTT I 7T T 77 77T 77777 \\\_\V\/Q\\\\ 0000c?

CHLVd ALIDOT3A 14
WNWIXYW 40 JONVH AYYANNOS 3ANLilY 3aniiv




* 30VdS ALIDO13A-3ANLILIV NI AYLN3-34 40 3ISVHd
JVILINI IHL ¥04 SIIHOLOINYHL FONVY WNWIXVYIN K11vO0T OML 9 Oid

23S /44 ~ ALIDOT3A

,vwm.mmooo.mmooo.mmOOO.—mOO0.0m.OOO.mN OOO.wNOOO.hN
1 I I I I I _ _

— 000'061
A\
(2 HLlvd) JONVYH WNWIXVI
404 WNIILHO TvO07T 4 000'002
()} HLvd)
JONVE WNWIXVYIN
HO4 WNWIL1dO - 000012

ALIDOTIA WNNIXYAN 7N
//
TTTTITTTTI T \'\\\\\ 777

000°022

1
Y777777777777777777

AdVANNO8 3aNLILV
—000°0¢2

‘14 ~ 3dNLlILv




ANGLE -OF -ATTACK ~ DEG

30

25

20

15

10

-15

-20

-25

-30

=35

CONTROL ON CONSTRAINT
~ 72— BOUNDARY
~ .

PATH 1 / MAXIMUM

o VELOCITY PATH

I
<c—— e ———— — (=
~

] ] ] 1 1 [N T | L 1 1 L ] 1 | )

26,000 28,000 30,000 32,000 34,000

VELOCITY ~ FT/SEC

FIG.7 ANGLE-OF-ATTACK Vs. VELOCITY FOR TWO
LOCALLY MAXIMUM RANGE PATHS.



29
-l -

concentrate on maximizing the integral (the range) in Eqn (24). Path 1 and 2

are shown in Fig, 6 in altitude-velocity space.

Continuity of the Q- Program Results obtained in reference 5 show a

discontinuity in the QG-program at the entry point onto the constrained arc,

The control should be continuous since the variational Hamiltonian is regular [11].
The performance index is not very sensitive to this discontinuity so first order
methods have great difficulty in obtaining continuous a-programs. The second
order scheme demonstrates clearly that O is continuious across the entry point

for path 1.

Maximum Velocity Path The trade off between entry point velocity and range

in the performance index suggests that the maximum velocity path may be a
good approximation to the maximum range path., The maximum velocity path
is shown by a dashed path in Figs. 5,6, and 7. The maximum velocity path
(Fig. 5) plus the constrained path down to 26,494 ft/sec. gives only 5.5% less
range than path 1 and 24.5% more range than path 2, Initially, the angle-of-
attack program for maximum velocity resembles that of path 1,(Fig. 7)s
however, as the paths near the entry point, @ for path 1 bends over. The
difference in velocity at the entry point between the maximum velocity path and

path 1 is 520 ft/sec, as seen in Fig. 6.

Conjugate Point First-order computing methods try to improve performance

index on each iteration, without concern for the change in the size of the
gradient. They will not converge to an extremal path that contains a conjugate

peoint, since such a path is not an optimal path,
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An attempt was made, using the second-order sweep method to
check the results obtained for path 2 of Fig. 5 by the first-order conjugate
gradient method. However, all attempts at solution of the matrix Riccati
equation (which governs the second partial derivatives of the optimal return
function with respect to the state variables) resulted in overflow of the com-
puter (1038). This led us to suspect the presence of conjugate points in the
vicinity of the extremal field for the following reasons:

(a) Using the conjugate gradient method to solve the maximum range
problem, both the performance index and the norm of the gradient increased
for sare iteratims, This behavior indicates that a conjugate point might exist.

| (b) The sweep method tries to decrease the magnitude of the gradient
on each iteration, without concern for the change in the performance index,
Hence, the method may very well move toward an extremal path containing
a conjugate point; however, convergence to such a path will not be obtained,
because solutions to the Ricatti equation, as mentioned above, will overflow
the computer first,

(c) A necessary (but not sufficient) condition for the existence of a
conjugate point on an extremal path in a maximization problem is for the
matrix
-1

Hxx - chx. Hoa Ha,x (41)

np

B

to have some positive eigenvalues over all or part of the path (cf, refs,7
and 9), If B is negative-definite over the whole path there can be no con-
jugate points, For both paths 1 and 2 in Fig. 5 we found that B did indeed

have some positive eigenvalues,
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Terminal Arc At neither end of the terminal arc are all the state variables

specified. In the conjugate gradient method the missing initial conditions
are treated as control parameters chosen to maximize the objective function.
At the initial point of the terminal arc h and Y are known but V is to be

determined., From (25) and (32)

oR
F 1
— =) (t,) - . (42)
\4 h C.pP V
£ =t, 1+ 2Ly (M
R 2m
oR
The optimization process drives -a— to zero making Xv(tz) equal to the
'\’T

required value,

The optimal path obtained is shown in Fig. 8 in the altitude-range
space, The Q-program corresponds very closely to the & for maximum
L/D (lift over-drag ratio) except near the terminal point where high values
of angle-of-attack are used in the flare-out maneuver, Fig. 9 shows the &
history as a function of range. The exit velocity determined by a parameter

search is 19,010 ft/sec.
9., CONCLUSIONS

A sufficient condition for separate computation of arcs for certain
optimization problems with state variable inequality constraints was formally
presented. This concept was applied to the problem of maximizing the range
of a glider entering the Earth's atmosphere at parabolic speeds subject to a
maximum altitude constraint after the initial pull up. In numerically deter-
mining the unconstrained arcs, the conjugate gradient method converged

extremely rapidly. This allowed a detailed investigation of maximum range
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trajectories,

For the initial phase of re-entry two locally maximum range arcs

were found, This appears to be a consequence of the lift-drag characteristics

of the vehicle and the decrease in air density with altitude. Both first and

second order methods indicate a conjugate point behavior in the initial phase

extremal field,

10,

11,
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